Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finite Automata Intersection Non-Emptiness: Parameterized Complexity Revisited (2108.05244v1)

Published 11 Aug 2021 in cs.FL, cs.CC, and cs.DB

Abstract: The problem DFA-Intersection-Nonemptiness asks if a given number of deterministic automata accept a common word. In general, this problem is PSPACE-complete. Here, we investigate this problem for the subclasses of commutative automata and automata recognizing sparse languages. We show that in both cases DFA-Intersection-Nonemptiness is complete for NP and for the parameterized class $W[1]$, where the number of input automata is the parameter, when the alphabet is fixed. Additionally, we establish the same result for Tables Non-Empty Join, a problem that asks if the join of several tables (possibly containing null values) in a database is non-empty. Lastly, we show that Bounded NFA-Intersection-Nonemptiness, parameterized by the length bound, is $\mbox{co-}W[2]$-hard with a variable input alphabet and for nondeterministic automata recognizing finite strictly bounded languages, yielding a variant leaving the realm of $W[1]$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.