Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Deep Pairwise Learning To Rank For Search Autocomplete (2108.04976v2)

Published 11 Aug 2021 in cs.IR and cs.LG

Abstract: Autocomplete (a.k.a "Query Auto-Completion", "AC") suggests full queries based on a prefix typed by customer. Autocomplete has been a core feature of commercial search engine. In this paper, we propose a novel context-aware neural network based pairwise ranker (DeepPLTR) to improve AC ranking, DeepPLTR leverages contextual and behavioral features to rank queries by minimizing a pairwise loss, based on a fully-connected neural network structure. Compared to LambdaMART ranker, DeepPLTR shows +3.90% MeanReciprocalRank (MRR) lift in offline evaluation, and yielded +0.06% (p < 0.1) Gross Merchandise Value (GMV) lift in an Amazon's online A/B experiment.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.