Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Analysis of ODE2VAE with Examples (2108.04899v2)

Published 10 Aug 2021 in cs.LG

Abstract: Deep generative models aim to learn underlying distributions that generate the observed data. Given the fact that the generative distribution may be complex and intractable, deep latent variable models use probabilistic frameworks to learn more expressive joint probability distributions over the data and their low-dimensional hidden variables. Learning complex probability distributions over sequential data without any supervision is a difficult task for deep generative models. Ordinary Differential Equation Variational Auto-Encoder (ODE2VAE) is a deep latent variable model that aims to learn complex distributions over high-dimensional sequential data and their low-dimensional representations. ODE2VAE infers continuous latent dynamics of the high-dimensional input in a low-dimensional hierarchical latent space. The hierarchical organization of the continuous latent space embeds a physics-guided inductive bias in the model. In this paper, we analyze the latent representations inferred by the ODE2VAE model over three different physical motion datasets: bouncing balls, projectile motion, and simple pendulum. Through our experiments, we explore the effects of the physics-guided inductive bias of the ODE2VAE model over the learned dynamical latent representations. We show that the model is able to learn meaningful latent representations to an extent without any supervision.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)