Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UniNet: A Unified Scene Understanding Network and Exploring Multi-Task Relationships through the Lens of Adversarial Attacks (2108.04584v2)

Published 10 Aug 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Scene understanding is crucial for autonomous systems which intend to operate in the real world. Single task vision networks extract information only based on some aspects of the scene. In multi-task learning (MTL), on the other hand, these single tasks are jointly learned, thereby providing an opportunity for tasks to share information and obtain a more comprehensive understanding. To this end, we develop UniNet, a unified scene understanding network that accurately and efficiently infers vital vision tasks including object detection, semantic segmentation, instance segmentation, monocular depth estimation, and monocular instance depth prediction. As these tasks look at different semantic and geometric information, they can either complement or conflict with each other. Therefore, understanding inter-task relationships can provide useful cues to enable complementary information sharing. We evaluate the task relationships in UniNet through the lens of adversarial attacks based on the notion that they can exploit learned biases and task interactions in the neural network. Extensive experiments on the Cityscapes dataset, using untargeted and targeted attacks reveal that semantic tasks strongly interact amongst themselves, and the same holds for geometric tasks. Additionally, we show that the relationship between semantic and geometric tasks is asymmetric and their interaction becomes weaker as we move towards higher-level representations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube