Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Tight Analysis of Slim Heaps and Smooth Heaps (2108.04458v2)

Published 10 Aug 2021 in cs.DS

Abstract: The smooth heap and the closely related slim heap are recently invented self-adjusting implementations of the heap (priority queue) data structure. We analyze the efficiency of these data structures. We obtain the following amortized bounds on the time per operation: $O(1)$ for make-heap, insert, find-min, and meld; $O(\log\log n)$ for decrease-key; and $O(\log n)$ for delete-min and delete, where $n$ is the current number of items in the heap. These bounds are tight not only for smooth and slim heaps but for any heap implementation in Iacono and \"{O}zkan's pure heap model, intended to capture all possible "self-adjusting" heap implementations. Slim and smooth heaps are the first known data structures to match Iacono and \"{O}zkan's lower bounds and to satisfy the constraints of their model. Our analysis builds on Pettie's insights into the efficiency of pairing heaps, a classical self-adjusting heap implementation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.