Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Attribute Guided Sparse Tensor-Based Model for Person Re-Identification (2108.04352v1)

Published 29 Jul 2021 in cs.CV

Abstract: Visual perception of a person is easily influenced by many factors such as camera parameters, pose and viewpoint variations. These variations make person Re-Identification (ReID) a challenging problem. Nevertheless, human attributes usually stand as robust visual properties to such variations. In this paper, we propose a new method to leverage features from human attributes for person ReID. Our model uses a tensor to non-linearly fuse identity and attribute features, and then forces the parameters of the tensor in the loss function to generate discriminative fused features for ReID. Since tensor-based methods usually contain a large number of parameters, training all of these parameters becomes very slow, and the chance of overfitting increases as well. To address this issue, we propose two new techniques based on Structural Sparsity Learning (SSL) and Tensor Decomposition (TD) methods to create an accurate and stable learning problem. We conducted experiments on several standard pedestrian datasets, and experimental results indicate that our tensor-based approach significantly improves person ReID baselines and also outperforms state of the art methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.