Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AASeg: Attention Aware Network for Real Time Semantic Segmentation (2108.04349v4)

Published 27 Jul 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Semantic segmentation is a fundamental task in computer vision that involves dense pixel-wise classification for scene understanding. Despite significant progress, achieving high accuracy while maintaining real-time performance remains a challenging trade-off, particularly for deployment in resource-constrained or latency-sensitive applications. In this paper, we propose AASeg, a novel Attention-Aware Network for real-time semantic segmentation. AASeg effectively captures both spatial and channel-wise dependencies through lightweight Spatial Attention (SA) and Channel Attention (CA) modules, enabling enhanced feature discrimination without incurring significant computational overhead. To enrich contextual representation, we introduce a Multi-Scale Context (MSC) module that aggregates dense local features across multiple receptive fields. The outputs from attention and context modules are adaptively fused to produce high-resolution segmentation maps. Extensive experiments on Cityscapes, ADE20K, and CamVid demonstrate that AASeg achieves a compelling trade-off between accuracy and efficiency, outperforming prior real-time methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube