Canonical Noise Distributions and Private Hypothesis Tests (2108.04303v4)
Abstract: $f$-DP has recently been proposed as a generalization of differential privacy allowing a lossless analysis of composition, post-processing, and privacy amplification via subsampling. In the setting of $f$-DP, we propose the concept of a canonical noise distribution (CND), the first mechanism designed for an arbitrary $f$-DP guarantee. The notion of CND captures whether an additive privacy mechanism perfectly matches the privacy guarantee of a given $f$. We prove that a CND always exists, and give a construction that produces a CND for any $f$. We show that private hypothesis tests are intimately related to CNDs, allowing for the release of private $p$-values at no additional privacy cost as well as the construction of uniformly most powerful (UMP) tests for binary data, within the general $f$-DP framework. We apply our techniques to the problem of difference of proportions testing, and construct a UMP unbiased (UMPU) "semi-private" test which upper bounds the performance of any $f$-DP test. Using this as a benchmark we propose a private test, based on the inversion of characteristic functions, which allows for optimal inference for the two population parameters and is nearly as powerful as the semi-private UMPU. When specialized to the case of $(\epsilon,0)$-DP, we show empirically that our proposed test is more powerful than any $(\epsilon/\sqrt 2)$-DP test and has more accurate type I errors than the classic normal approximation test.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.