Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deterministic Massively Parallel Connectivity (2108.04102v1)

Published 9 Aug 2021 in cs.DS and cs.DC

Abstract: We consider the problem of designing fundamental graph algorithms on the model of Massive Parallel Computation (MPC). The input to the problem is an undirected graph $G$ with $n$ vertices and $m$ edges, and with $D$ being the maximum diameter of any connected component in $G$. We consider the MPC with low local space, allowing each machine to store only $\Theta(n\delta)$ words for an arbitrarily constant $\delta > 0$, and with linear global space (which is equal to the number of machines times the local space available), that is, with optimal utilization. In a recent breakthrough, Andoni et al. (FOCS 18) and Behnezhad et al. (FOCS 19) designed parallel randomized algorithms that in $O(\log D + \log \log n)$ rounds on an MPC with low local space determine all connected components of an input graph, improving upon the classic bound of $O(\log n)$ derived from earlier works on PRAM algorithms. In this paper, we show that asymptotically identical bounds can be also achieved for deterministic algorithms: we present a deterministic MPC low local space algorithm that in $O(\log D + \log \log n)$ rounds determines all connected components of the input graph.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.