Papers
Topics
Authors
Recent
2000 character limit reached

Unknown Object Segmentation through Domain Adaptation (2108.04021v1)

Published 9 Aug 2021 in cs.RO

Abstract: The ability to segment unknown objects in cluttered scenes has a profound impact on robot grasping. The rise of deep learning has greatly transformed the pipeline of robotic grasping from model-based approach to data-driven stream, which generally requires a large scale of grasping data either collected in simulation or from real-world examples. In this paper, we proposed a sim-to-real framework to transfer the object segmentation model learned in simulation to the real-world. First, data samples are collected in simulation, including RGB, 6D pose, and point cloud. Second, we also present a GAN-based unknown object segmentation method through domain adaptation, which consists of an image translation module and an image segmentation module. The image translation module is used to shorten the reality gap and the segmentation module is responsible for the segmentation mask generation. We used the above method to perform segmentation experiments on unknown objects in a bin-picking scenario. Finally, the experimental result shows that the segmentation model learned in simulation can be used for real-world data segmentation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.