Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unknown Object Segmentation through Domain Adaptation (2108.04021v1)

Published 9 Aug 2021 in cs.RO

Abstract: The ability to segment unknown objects in cluttered scenes has a profound impact on robot grasping. The rise of deep learning has greatly transformed the pipeline of robotic grasping from model-based approach to data-driven stream, which generally requires a large scale of grasping data either collected in simulation or from real-world examples. In this paper, we proposed a sim-to-real framework to transfer the object segmentation model learned in simulation to the real-world. First, data samples are collected in simulation, including RGB, 6D pose, and point cloud. Second, we also present a GAN-based unknown object segmentation method through domain adaptation, which consists of an image translation module and an image segmentation module. The image translation module is used to shorten the reality gap and the segmentation module is responsible for the segmentation mask generation. We used the above method to perform segmentation experiments on unknown objects in a bin-picking scenario. Finally, the experimental result shows that the segmentation model learned in simulation can be used for real-world data segmentation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.