Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FederatedNILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring based on Federated Deep Learning (2108.03591v1)

Published 8 Aug 2021 in cs.LG, cs.AI, and eess.SP

Abstract: Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in disaggregating smart meter readings from the household-level into appliance-level consumptions, can help to analyze electricity consumption behaviours of users and enable practical smart energy and smart grid applications. However, smart meters are privately owned and distributed, which make real-world applications of NILM challenging. To this end, this paper develops a distributed and privacy-preserving federated deep learning framework for NILM (FederatedNILM), which combines federated learning with a state-of-the-art deep learning architecture to conduct NILM for the classification of typical states of household appliances. Through extensive comparative experiments, the effectiveness of the proposed FederatedNILM framework is demonstrated.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.