Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Online Stochastic Gradient Methods Under Sub-Weibull Noise and the Polyak-Łojasiewicz Condition (2108.03285v2)

Published 6 Aug 2021 in math.OC, cs.SY, and eess.SY

Abstract: This paper focuses on the online gradient and proximal-gradient methods with stochastic gradient errors. In particular, we examine the performance of the online gradient descent method when the cost satisfies the Polyak-\L ojasiewicz (PL) inequality. We provide bounds in expectation and in high probability (that hold iteration-wise), with the latter derived by leveraging a sub-Weibull model for the errors affecting the gradient. The convergence results show that the instantaneous regret converges linearly up to an error that depends on the variability of the problem and the statistics of the sub-Weibull gradient error. Similar convergence results are then provided for the online proximal-gradient method, under the assumption that the composite cost satisfies the proximal-PL condition. In the case of static costs, we provide new bounds for the regret incurred by these methods when the gradient errors are modeled as sub-Weibull random variables. Illustrative simulations are provided to corroborate the technical findings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube