Higher-order motif analysis in hypergraphs (2108.03192v1)
Abstract: A deluge of new data on social, technological and biological networked systems suggests that a large number of interactions among system units are not limited to pairs, but rather involve a higher number of nodes. To properly encode such higher-order interactions, richer mathematical frameworks such as hypergraphs are needed, where hyperlinks describe connections among an arbitrary number of nodes. Here we introduce the concept of higher-order motifs, small connected subgraphs where vertices may be linked by interactions of any order. We provide lower and upper bounds on the number of higher-order motifs as a function of the motif size, and propose an efficient algorithm to extract complete higher-order motif profiles from empirical data. We identify different families of hypergraphs, characterized by distinct higher-order connectivity patterns at the local scale. We also capture evidences of structural reinforcement, a mechanism that associates higher strengths of higher-order interactions for the nodes that interact more at the pairwise level. Our work highlights the informative power of higher-order motifs, providing a first way to extract higher-order fingerprints in hypergraphs at the network microscale.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.