Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Stochastic Deep Model Reference Adaptive Control (2108.03120v1)

Published 4 Aug 2021 in eess.SY, cs.AI, cs.LG, cs.RO, and cs.SY

Abstract: In this paper, we present a Stochastic Deep Neural Network-based Model Reference Adaptive Control. Building on our work "Deep Model Reference Adaptive Control", we extend the controller capability by using Bayesian deep neural networks (DNN) to represent uncertainties and model non-linearities. Stochastic Deep Model Reference Adaptive Control uses a Lyapunov-based method to adapt the output-layer weights of the DNN model in real-time, while a data-driven supervised learning algorithm is used to update the inner-layers parameters. This asynchronous network update ensures boundedness and guaranteed tracking performance with a learning-based real-time feedback controller. A Bayesian approach to DNN learning helped avoid over-fitting the data and provide confidence intervals over the predictions. The controller's stochastic nature also ensured "Induced Persistency of excitation," leading to convergence of the overall system signal.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.