Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Causal Inference Theory with Information Dependency Models (2108.03099v2)

Published 6 Aug 2021 in cs.DM, cs.IT, math.GN, and math.IT

Abstract: Inferring the potential consequences of an unobserved event is a fundamental scientific question. To this end, Pearl's celebrated do-calculus provides a set of inference rules to derive an interventional probability from an observational one. In this framework, the primitive causal relations are encoded as functional dependencies in a Structural Causal Model (SCM), which are generally mapped into a Directed Acyclic Graph (DAG) in the absence of cycles. In this paper, by contrast, we capture causality without reference to graphs or functional dependencies, but with information fields and Witsenhausen's intrinsic model. The three rules of do-calculus reduce to a unique sufficient condition for conditional independence, the topological separation, which presents interesting theoretical and practical advantages over the d-separation. With this unique rule, we can deal with systems that cannot be represented with DAGs, for instance systems with cycles and/or 'spurious' edges. We treat an example that cannot be handled-to the extent of our knowledge-with the tools of the current literature. We also explain why, in the presence of cycles, the theory of causal inference might require different tools, depending on whether the random variables are discrete or continuous.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.