Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evaluating the Tradeoff Between Abstractiveness and Factuality in Abstractive Summarization (2108.02859v2)

Published 5 Aug 2021 in cs.CL

Abstract: Neural models for abstractive summarization tend to generate output that is fluent and well-formed but lacks semantic faithfulness, or factuality, with respect to the input documents. In this paper, we analyze the tradeoff between abstractiveness and factuality of generated summaries across multiple datasets and models, using extensive human evaluations of factuality. In our analysis, we visualize the rates of change in factuality as we gradually increase abstractiveness using a decoding constraint, and we observe that, while increased abstractiveness generally leads to a drop in factuality, the rate of factuality decay depends on factors such as the data that the system was trained on. We introduce two datasets with human factuality judgements; one containing 10.2k generated summaries with systematically varied degrees of abstractiveness; the other containing 4.2k summaries from five different summarization models. We propose new factuality metrics that adjust for the degree of abstractiveness, and we use them to compare the abstractiveness-adjusted factuality of previous summarization works, providing baselines for future work.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.