Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Decoupled Transformer for Scalable Inference in Open-domain Question Answering (2108.02765v1)

Published 5 Aug 2021 in cs.CL

Abstract: Large transformer models, such as BERT, achieve state-of-the-art results in machine reading comprehension (MRC) for open-domain question answering (QA). However, transformers have a high computational cost for inference which makes them hard to apply to online QA systems for applications like voice assistants. To reduce computational cost and latency, we propose decoupling the transformer MRC model into input-component and cross-component. The decoupling allows for part of the representation computation to be performed offline and cached for online use. To retain the decoupled transformer accuracy, we devised a knowledge distillation objective from a standard transformer model. Moreover, we introduce learned representation compression layers which help reduce by four times the storage requirement for the cache. In experiments on the SQUAD 2.0 dataset, a decoupled transformer reduces the computational cost and latency of open-domain MRC by 30-40% with only 1.2 points worse F1-score compared to a standard transformer.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.