Papers
Topics
Authors
Recent
2000 character limit reached

An Abstract View of Big Data Processing Programs (2108.02582v1)

Published 5 Aug 2021 in cs.SE and cs.DC

Abstract: This paper proposes a model for specifying data flow based parallel data processing programs agnostic of target Big Data processing frameworks. The paper focuses on the formal abstract specification of non-iterative and iterative programs, generalizing the strategies adopted by data flow Big Data processing frameworks. The proposed model relies on monoid AlgebraandPetri Netstoabstract Big Data processing programs in two levels: a high level representing the program data flow and a lower level representing data transformation operations (e.g., filtering, aggregation, join). We extend the model for data processing programs proposed in [1], to enable the use of iterative programs. The general specification of iterative data processing programs implemented by data flow-based parallel programming models is essential given the democratization of iterative and greedy Big Data analytics algorithms. Indeed, these algorithms call for revisiting parallel programming models to express iterations. The paper gives a comparative analysis of the iteration strategies proposed byApache Spark, DryadLINQ, Apache Beam and Apache Flink. It discusses how the model achieves to generalize these strategies.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.