Papers
Topics
Authors
Recent
2000 character limit reached

Efficient approximation of SDEs driven by countably dimensional Wiener process and Poisson random measure (2108.02394v1)

Published 5 Aug 2021 in math.PR, cs.NA, and math.NA

Abstract: In this paper we deal with pointwise approximation of solutions of stochastic differential equations (SDEs) driven by infinite dimensional Wiener process with additional jumps generated by Poisson random measure. The further investigations contain upper error bounds for the proposed truncated dimension randomized Euler scheme. We also establish matching (up to constants) upper and lower bounds for $\varepsilon$-complexity and show that the defined algorithm is optimal in the Information-Based Complexity (IBC) sense. Finally, results of numerical experiments performed by using GPU architecture are also reported.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.