Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dual Graph Convolutional Networks with Transformer and Curriculum Learning for Image Captioning (2108.02366v1)

Published 5 Aug 2021 in cs.CV

Abstract: Existing image captioning methods just focus on understanding the relationship between objects or instances in a single image, without exploring the contextual correlation existed among contextual image. In this paper, we propose Dual Graph Convolutional Networks (Dual-GCN) with transformer and curriculum learning for image captioning. In particular, we not only use an object-level GCN to capture the object to object spatial relation within a single image, but also adopt an image-level GCN to capture the feature information provided by similar images. With the well-designed Dual-GCN, we can make the linguistic transformer better understand the relationship between different objects in a single image and make full use of similar images as auxiliary information to generate a reasonable caption description for a single image. Meanwhile, with a cross-review strategy introduced to determine difficulty levels, we adopt curriculum learning as the training strategy to increase the robustness and generalization of our proposed model. We conduct extensive experiments on the large-scale MS COCO dataset, and the experimental results powerfully demonstrate that our proposed method outperforms recent state-of-the-art approaches. It achieves a BLEU-1 score of 82.2 and a BLEU-2 score of 67.6. Our source code is available at {\em \color{magenta}{\url{https://github.com/Unbear430/DGCN-for-image-captioning}}}.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.