Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Structure Consistency for Deep Model Watermarking (2108.02360v1)

Published 5 Aug 2021 in cs.CR and cs.CV

Abstract: The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack. There has been significant progress in solutions to protect the IP of DNN models in classification tasks. However, little attention has been devoted to the protection of DNNs in image processing tasks. By utilizing consistent invisible spatial watermarks, one recent work first considered model watermarking for deep image processing networks and demonstrated its efficacy in many downstream tasks. Nevertheless, it highly depends on the hypothesis that the embedded watermarks in the network outputs are consistent. When the attacker uses some common data augmentation attacks (e.g., rotate, crop, and resize) during surrogate model training, it will totally fail because the underlying watermark consistency is destroyed. To mitigate this issue, we propose a new watermarking methodology, namelystructure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed. Specifically, the embedded watermarks are designed to be aligned with physically consistent image structures, such as edges or semantic regions. Experiments demonstrate that our method is much more robust than the baseline method in resisting data augmentation attacks for model IP protection. Besides that, we further test the generalization ability and robustness of our method to a broader range of circumvention attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Jie Zhang (847 papers)
  2. Dongdong Chen (164 papers)
  3. Jing Liao (100 papers)
  4. Han Fang (62 papers)
  5. Zehua Ma (11 papers)
  6. Weiming Zhang (136 papers)
  7. Gang Hua (101 papers)
  8. Nenghai Yu (174 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.