Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LHRM: A LBS based Heterogeneous Relations Model for User Cold Start Recommendation in Online Travel Platform (2108.02344v1)

Published 5 Aug 2021 in cs.IR

Abstract: Most current recommender systems used the historical behaviour data of user to predict user' preference. However, it is difficult to recommend items to new users accurately. To alleviate this problem, existing user cold start methods either apply deep learning to build a cross-domain recommender system or map user attributes into the space of user behaviour. These methods are more challenging when applied to online travel platform (e.g., Fliggy), because it is hard to find a cross-domain that user has similar behaviour with travel scenarios and the Location Based Services (LBS) information of users have not been paid sufficient attention. In this work, we propose a LBS-based Heterogeneous Relations Model (LHRM) for user cold start recommendation, which utilizes user's LBS information and behaviour information in related domains and user's behaviour information in travel platforms (e.g., Fliggy) to construct the heterogeneous relations between users and items. Moreover, an attention-based multi-layer perceptron is applied to extract latent factors of users and items. Through this way, LHRM has better generalization performance than existing methods. Experimental results on real data from Fliggy's offline log illustrate the effectiveness of LHRM.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.