Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Attentive Cross-modal Connections for Deep Multimodal Wearable-based Emotion Recognition (2108.02241v1)

Published 4 Aug 2021 in cs.LG and eess.SP

Abstract: Classification of human emotions can play an essential role in the design and improvement of human-machine systems. While individual biological signals such as Electrocardiogram (ECG) and Electrodermal Activity (EDA) have been widely used for emotion recognition with machine learning methods, multimodal approaches generally fuse extracted features or final classification/regression results to boost performance. To enhance multimodal learning, we present a novel attentive cross-modal connection to share information between convolutional neural networks responsible for learning individual modalities. Specifically, these connections improve emotion classification by sharing intermediate representations among EDA and ECG and apply attention weights to the shared information, thus learning more effective multimodal embeddings. We perform experiments on the WESAD dataset to identify the best configuration of the proposed method for emotion classification. Our experiments show that the proposed approach is capable of learning strong multimodal representations and outperforms a number of baselines methods.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.