Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MRCpy: A Library for Minimax Risk Classifiers (2108.01952v4)

Published 4 Aug 2021 in stat.ML and cs.LG

Abstract: Libraries for supervised classification have enabled the wide-spread usage of machine learning methods. Existing libraries, such as scikit-learn, caret, and mlpack, implement techniques based on the classical empirical risk minimization (ERM) approach. We present a Python library, MRCpy, that implements minimax risk classifiers (MRCs) based on the robust risk minimization (RRM) approach. The library offers multiple variants of MRCs that can provide performance guarantees, enable efficient learning in high dimensions, and adapt to distribution shifts. MRCpy follows an object-oriented approach and adheres to the standards of popular Python libraries, such as scikit-learn, facilitating readability and easy usage together with a seamless integration with other libraries. The source code is available under the GPL-3.0 license at https://github.com/MachineLearningBCAM/MRCpy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: