Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Controlled Text Generation as Continuous Optimization with Multiple Constraints (2108.01850v1)

Published 4 Aug 2021 in cs.CL

Abstract: As large-scale LLM pretraining pushes the state-of-the-art in text generation, recent work has turned to controlling attributes of the text such models generate. While modifying the pretrained models via fine-tuning remains the popular approach, it incurs a significant computational cost and can be infeasible due to lack of appropriate data. As an alternative, we propose MuCoCO -- a flexible and modular algorithm for controllable inference from pretrained models. We formulate the decoding process as an optimization problem which allows for multiple attributes we aim to control to be easily incorporated as differentiable constraints to the optimization. By relaxing this discrete optimization to a continuous one, we make use of Lagrangian multipliers and gradient-descent based techniques to generate the desired text. We evaluate our approach on controllable machine translation and style transfer with multiple sentence-level attributes and observe significant improvements over baselines.

Citations (68)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.