Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Community Detection in Massive Networks Using Aggregated Relational Data (2108.01727v3)

Published 22 Jul 2021 in cs.SI

Abstract: The mixed membership stochastic blockmodel (MMSB) is a popular Bayesian network model for community detection. Fitting such large Bayesian network models quickly becomes computationally infeasible when the number of nodes grows into hundreds of thousands and millions. In this paper we propose a novel mini-batch strategy based on aggregated relational data that leverages nodal information to fit MMSB to massive networks. We describe a scalable inference method that can utilize nodal information that often accompanies real-world networks. Conditioning on this extra information leads to a model that admits a parallel stochastic variational inference algorithm, utilizing stochastic gradients of bipartite graph formed from aggregated network ties between node subpopulations. We apply our method to a citation network with over two million nodes and 25 million edges, capturing explainable structure in this network. Our method recovers parameters and achieves better convergence on simulated networks generated according to the MMSB.

Summary

We haven't generated a summary for this paper yet.