Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From augmented microscopy to the topological transformer: a new approach in cell image analysis for Alzheimer's research (2108.01625v1)

Published 3 Aug 2021 in eess.IV, cs.CV, cs.LG, math.AT, math.ST, and stat.TH

Abstract: Cell image analysis is crucial in Alzheimer's research to detect the presence of A$\beta$ protein inhibiting cell function. Deep learning speeds up the process by making only low-level data sufficient for fruitful inspection. We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation. We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information. The performance regarding Intersection-over-Union is consistent concerning the choice of image preprocessing and ground-truth generation. Training model with data of a specific cell type demonstrates transfer learning applies to some extent. The topological transformer aims to extract persistence silhouettes or landscape signatures containing geometric information of a given image of cells. This feature extraction facilitates studying an image as a collection of one-dimensional data, substantially reducing computational costs. Using the transformer, we attempt grouping cell images by their cell type relying solely on topological features. Performances of the transformers followed by SVM, XGBoost, LGBM, and simple convolutional neural network classifiers are inferior to the conventional image classification. However, since this research initiates a new perspective in biomedical research by combining deep learning and topology for image analysis, we speculate follow-up investigation will reinforce our genuine regime.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)