Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Spatial Analysis of Physical Reservoir Computers (2108.01512v2)

Published 3 Aug 2021 in cs.LG, cond-mat.dis-nn, cond-mat.other, cond-mat.str-el, and cs.NE

Abstract: Physical reservoir computing is a computational framework that implements spatiotemporal information processing directly within physical systems. By exciting nonlinear dynamical systems and creating linear models from their state, we can create highly energy-efficient devices capable of solving machine learning tasks without building a modular system consisting of millions of neurons interconnected by synapses. To act as an effective reservoir, the chosen dynamical system must have two desirable properties: nonlinearity and memory. We present task agnostic spatial measures to locally measure both of these properties and exemplify them for a specific physical reservoir based upon magnetic skyrmion textures. In contrast to typical reservoir computing metrics, these metrics can be resolved spatially and in parallel from a single input signal, allowing for efficient parameter search to design efficient and high-performance reservoirs. Additionally, we show the natural trade-off between memory capacity and nonlinearity in our reservoir's behaviour, both locally and globally. Finally, by balancing the memory and nonlinearity in a reservoir, we can improve its performance for specific tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.