Spatial Analysis of Physical Reservoir Computers (2108.01512v2)
Abstract: Physical reservoir computing is a computational framework that implements spatiotemporal information processing directly within physical systems. By exciting nonlinear dynamical systems and creating linear models from their state, we can create highly energy-efficient devices capable of solving machine learning tasks without building a modular system consisting of millions of neurons interconnected by synapses. To act as an effective reservoir, the chosen dynamical system must have two desirable properties: nonlinearity and memory. We present task agnostic spatial measures to locally measure both of these properties and exemplify them for a specific physical reservoir based upon magnetic skyrmion textures. In contrast to typical reservoir computing metrics, these metrics can be resolved spatially and in parallel from a single input signal, allowing for efficient parameter search to design efficient and high-performance reservoirs. Additionally, we show the natural trade-off between memory capacity and nonlinearity in our reservoir's behaviour, both locally and globally. Finally, by balancing the memory and nonlinearity in a reservoir, we can improve its performance for specific tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.