Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Accelerating the Learning of TAMER with Counterfactual Explanations (2108.01358v2)

Published 3 Aug 2021 in cs.AI and cs.LG

Abstract: The capability to interactively learn from human feedback would enable agents in new settings. For example, even novice users could train service robots in new tasks naturally and interactively. Human-in-the-loop Reinforcement Learning (HRL) combines human feedback and Reinforcement Learning (RL) techniques. State-of-the-art interactive learning techniques suffer from slow learning speed, thus leading to a frustrating experience for the human. We approach this problem by extending the HRL framework TAMER for evaluative feedback with the possibility to enhance human feedback with two different types of counterfactual explanations (action and state based). We experimentally show that our extensions improve the speed of learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.