Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Solving of Constrained Path-Planning Problems with Graph Convolutional Networks and Optimized Tree Search (2108.01036v4)

Published 2 Aug 2021 in cs.AI, cs.LG, and cs.RO

Abstract: Deep learning-based methods are growing prominence for planning purposes. In this paper, we present a hybrid planner that combines a graph machine learning model and an optimal solver based on branch and bound tree search for path-planning tasks. More specifically, a graph neural network is used to assist the branch and bound algorithm in handling constraints associated with a desired solution path. There are multiple downstream practical applications, such as Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue operations. In off-road environments, AUGVs must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed online. We conduct experiments on realistic scenarios and show that graph neural network support enables substantial speedup and smoother scaling to harder path-planning problems. Additionally, information provided by the graph neural network enables the approach to outperform problem-specific handcrafted heuristics, highlighting the potential graph neural networks hold for path-planning tasks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.