Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A SPA-based Manifold Learning Framework for Motor Imagery EEG Data Classification (2108.00865v1)

Published 30 Jul 2021 in eess.SP and cs.LG

Abstract: The electroencephalography (EEG) signal is a non-stationary, stochastic, and highly non-linear bioelectric signal for which achieving high classification accuracy is challenging, especially when the number of subjects is limited. As frequently used solution, classifiers based on multilayer neural networks has to be implemented without large training data sets and careful tuning. This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks by discovering lower dimensional geometric structures. For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals. In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support. A spherical approximation (SPA) classifier is created using spherelets for local approximation, and the extracted features are classified with this manifold-based method. The SPA classifier achieves high accuracy in the 2008 BCI competition data, and the analysis shows that this method can significantly improve the decoding accuracy of MI tasks and exhibit strong robustness for small sample datasets. It would be simple and efficient to tune the two-parameters classifier for the online brain-computer interface(BCI)system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.