Cross-Modal Knowledge Transfer via Inter-Modal Translation and Alignment for Affect Recognition (2108.00809v1)
Abstract: Multi-modal affect recognition models leverage complementary information in different modalities to outperform their uni-modal counterparts. However, due to the unavailability of modality-specific sensors or data, multi-modal models may not be always employable. For this reason, we aim to improve the performance of uni-modal affect recognition models by transferring knowledge from a better-performing (or stronger) modality to a weaker modality during training. Our proposed multi-modal training framework for cross-modal knowledge transfer relies on two main steps. First, an encoder-classifier model creates task-specific representations for the stronger modality. Then, cross-modal translation generates multi-modal intermediate representations, which are also aligned in the latent space with the stronger modality representations. To exploit the contextual information in temporal sequential affect data, we use Bi-GRU and transformer encoder. We validate our approach on two multi-modal affect datasets, namely CMU-MOSI for binary sentiment classification and RECOLA for dimensional emotion regression. The results show that the proposed approach consistently improves the uni-modal test-time performance of the weaker modalities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.