Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Transfer Learning for Mining Feature Requests and Bug Reports from Tweets and App Store Reviews (2108.00663v1)

Published 2 Aug 2021 in cs.CL and cs.SE

Abstract: Identifying feature requests and bug reports in user comments holds great potential for development teams. However, automated mining of RE-related information from social media and app stores is challenging since (1) about 70% of user comments contain noisy, irrelevant information, (2) the amount of user comments grows daily making manual analysis unfeasible, and (3) user comments are written in different languages. Existing approaches build on traditional ML and deep learning (DL), but fail to detect feature requests and bug reports with high Recall and acceptable Precision which is necessary for this task. In this paper, we investigate the potential of transfer learning (TL) for the classification of user comments. Specifically, we train both monolingual and multilingual BERT models and compare the performance with state-of-the-art methods. We found that monolingual BERT models outperform existing baseline methods in the classification of English App Reviews as well as English and Italian Tweets. However, we also observed that the application of heavyweight TL models does not necessarily lead to better performance. In fact, our multilingual BERT models perform worse than traditional ML methods.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.