Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semi-Supervising Learning, Transfer Learning, and Knowledge Distillation with SimCLR (2108.00587v1)

Published 2 Aug 2021 in cs.CV and cs.LG

Abstract: Recent breakthroughs in the field of semi-supervised learning have achieved results that match state-of-the-art traditional supervised learning methods. Most successful semi-supervised learning approaches in computer vision focus on leveraging huge amount of unlabeled data, learning the general representation via data augmentation and transformation, creating pseudo labels, implementing different loss functions, and eventually transferring this knowledge to more task-specific smaller models. In this paper, we aim to conduct our analyses on three different aspects of SimCLR, the current state-of-the-art semi-supervised learning framework for computer vision. First, we analyze properties of contrast learning on fine-tuning, as we understand that contrast learning is what makes this method so successful. Second, we research knowledge distillation through teacher-forcing paradigm. We observe that when the teacher and the student share the same base model, knowledge distillation will achieve better result. Finally, we study how transfer learning works and its relationship with the number of classes on different data sets. Our results indicate that transfer learning performs better when number of classes are smaller.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.