Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster Rates of Private Stochastic Convex Optimization (2108.00331v3)

Published 31 Jul 2021 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) and provide excess population risks for some special classes of functions that are faster than the previous results of general convex and strongly convex functions. In the first part of the paper, we study the case where the population risk function satisfies the Tysbakov Noise Condition (TNC) with some parameter $\theta>1$. Specifically, we first show that under some mild assumptions on the loss functions, there is an algorithm whose output could achieve an upper bound of $\tilde{O}((\frac{1}{\sqrt{n}}+\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})\frac{\theta}{\theta-1})$ for $(\epsilon, \delta)$-DP when $\theta\geq 2$, here $n$ is the sample size and $d$ is the dimension of the space. Then we address the inefficiency issue, improve the upper bounds by $\text{Poly}(\log n)$ factors and extend to the case where $\theta\geq \bar{\theta}>1$ for some known $\bar{\theta}$. Next we show that the excess population risk of population functions satisfying TNC with parameter $\theta\geq 2$ is always lower bounded by $\Omega((\frac{d}{n\epsilon})\frac{\theta}{\theta-1}) $ and $\Omega((\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})\frac{\theta}{\theta-1})$ for $\epsilon$-DP and $(\epsilon, \delta)$-DP, respectively. In the second part, we focus on a special case where the population risk function is strongly convex. Unlike the previous studies, here we assume the loss function is {\em non-negative} and {\em the optimal value of population risk is sufficiently small}. With these additional assumptions, we propose a new method whose output could achieve an upper bound of $O(\frac{d\log\frac{1}{\delta}}{n2\epsilon2}+\frac{1}{n{\tau}})$ for any $\tau\geq 1$ in $(\epsilon,\delta)$-DP model if the sample size $n$ is sufficiently large.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.