Papers
Topics
Authors
Recent
2000 character limit reached

Diverse Linguistic Features for Assessing Reading Difficulty of Educational Filipino Texts (2108.00241v1)

Published 31 Jul 2021 in cs.CL and cs.LG

Abstract: In order to ensure quality and effective learning, fluency, and comprehension, the proper identification of the difficulty levels of reading materials should be observed. In this paper, we describe the development of automatic machine learning-based readability assessment models for educational Filipino texts using the most diverse set of linguistic features for the language. Results show that using a Random Forest model obtained a high performance of 62.7% in terms of accuracy, and 66.1% when using the optimal combination of feature sets consisting of traditional and syllable pattern-based predictors.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.