Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-scale Matching Networks for Semantic Correspondence (2108.00211v2)

Published 31 Jul 2021 in cs.CV

Abstract: Deep features have been proven powerful in building accurate dense semantic correspondences in various previous works. However, the multi-scale and pyramidal hierarchy of convolutional neural networks has not been well studied to learn discriminative pixel-level features for semantic correspondence. In this paper, we propose a multi-scale matching network that is sensitive to tiny semantic differences between neighboring pixels. We follow the coarse-to-fine matching strategy and build a top-down feature and matching enhancement scheme that is coupled with the multi-scale hierarchy of deep convolutional neural networks. During feature enhancement, intra-scale enhancement fuses same-resolution feature maps from multiple layers together via local self-attention and cross-scale enhancement hallucinates higher-resolution feature maps along the top-down hierarchy. Besides, we learn complementary matching details at different scales thus the overall matching score is refined by features of different semantic levels gradually. Our multi-scale matching network can be trained end-to-end easily with few additional learnable parameters. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on three popular benchmarks with high computational efficiency.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.