Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Image-based Illumination Harmonization (2108.00150v2)

Published 31 Jul 2021 in cs.CV

Abstract: Integrating a foreground object into a background scene with illumination harmonization is an important but challenging task in computer vision and augmented reality community. Existing methods mainly focus on foreground and background appearance consistency or the foreground object shadow generation, which rarely consider global appearance and illumination harmonization. In this paper, we formulate seamless illumination harmonization as an illumination exchange and aggregation problem. Specifically, we firstly apply a physically-based rendering method to construct a large-scale, high-quality dataset (named IH) for our task, which contains various types of foreground objects and background scenes with different lighting conditions. Then, we propose a deep image-based illumination harmonization GAN framework named DIH-GAN, which makes full use of a multi-scale attention mechanism and illumination exchange strategy to directly infer mapping relationship between the inserted foreground object and the corresponding background scene. Meanwhile, we also use adversarial learning strategy to further refine the illumination harmonization result. Our method can not only achieve harmonious appearance and illumination for the foreground object but also can generate compelling shadow cast by the foreground object. Comprehensive experiments on both our IH dataset and real-world images show that our proposed DIH-GAN provides a practical and effective solution for image-based object illumination harmonization editing, and validate the superiority of our method against state-of-the-art methods. Our IH dataset is available at https://github.com/zhongyunbao/Dataset.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube