Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

T$_k$ML-AP: Adversarial Attacks to Top-$k$ Multi-Label Learning (2108.00146v1)

Published 31 Jul 2021 in cs.CV

Abstract: Top-$k$ multi-label learning, which returns the top-$k$ predicted labels from an input, has many practical applications such as image annotation, document analysis, and web search engine. However, the vulnerabilities of such algorithms with regards to dedicated adversarial perturbation attacks have not been extensively studied previously. In this work, we develop methods to create adversarial perturbations that can be used to attack top-$k$ multi-label learning-based image annotation systems (TkML-AP). Our methods explicitly consider the top-$k$ ranking relation and are based on novel loss functions. Experimental evaluations on large-scale benchmark datasets including PASCAL VOC and MS COCO demonstrate the effectiveness of our methods in reducing the performance of state-of-the-art top-$k$ multi-label learning methods, under both untargeted and targeted attacks.

Citations (32)

Summary

We haven't generated a summary for this paper yet.