Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Near-Optimal Spanners for General Graphs in (Nearly) Linear Time (2108.00102v1)

Published 30 Jul 2021 in cs.DS

Abstract: Let $G = (V,E,w)$ be a weighted undirected graph on $|V| = n$ vertices and $|E| = m$ edges, let $k \ge 1$ be any integer, and let $\epsilon < 1$ be any parameter. We present the following results on fast constructions of spanners with near-optimal sparsity and lightness, which culminate a long line of work in this area. (By near-optimal we mean optimal under Erd\H{o}s' girth conjecture and disregarding the $\epsilon$-dependencies.) - There are (deterministic) algorithms for constructing $(2k-1)(1+\epsilon)$-spanners for $G$ with a near-optimal sparsity of $O(n{1/k} \log(1/\epsilon)/\epsilon))$. The first algorithm can be implemented in the pointer-machine model within time $O(m\alpha(m,n) \log(1/\epsilon)/\epsilon) + SORT(m))$, where $\alpha( , )$ is the two-parameter inverse-Ackermann function and $SORT(m)$ is the time needed to sort $m$ integers. The second algorithm can be implemented in the WORD RAM model within time $O(m \log(1/\epsilon)/\epsilon))$. - There is a (deterministic) algorithm for constructing a $(2k-1)(1+\epsilon)$-spanner for $G$ that achieves a near-optimal bound of $O(n{1/k}\mathrm{poly}(1/\epsilon))$ on both sparsity and lightness. This algorithm can be implemented in the pointer-machine model within time $O(m\alpha(m,n) \mathrm{poly}(1/\epsilon) + SORT(m))$ and in the WORD RAM model within time $O(m \alpha(m,n) \mathrm{poly}(1/\epsilon))$. The previous fastest constructions of $(2k-1)(1+\epsilon)$-spanners with near-optimal sparsity incur a runtime of is $O(\min{m(n{1+1/k}) + n\log n,k n{2+1/k}})$, even regardless of the lightness. Importantly, the greedy spanner for stretch $2k-1$ has sparsity $O(n{1/k})$ -- with no $\epsilon$-dependence whatsoever, but its runtime is $O(m(n{1+1/k} + n\log n))$. Moreover, the state-of-the-art lightness bound of any $(2k-1)$-spanner is poor, even regardless of the sparsity and runtime.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube