Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Multi-Head Relevance Weighting Framework For Learning Raw Waveform Audio Representations (2107.14793v1)

Published 30 Jul 2021 in eess.AS, cs.SD, and eess.SP

Abstract: In this work, we propose a multi-head relevance weighting framework to learn audio representations from raw waveforms. The audio waveform, split into windows of short duration, are processed with a 1-D convolutional layer of cosine modulated Gaussian filters acting as a learnable filterbank. The key novelty of the proposed framework is the introduction of multi-head relevance on the learnt filterbank representations. Each head of the relevance network is modelled as a separate sub-network. These heads perform representation enhancement by generating weight masks for different parts of the time-frequency representation learnt by the parametric acoustic filterbank layer. The relevance weighted representations are fed to a neural classifier and the whole system is trained jointly for the audio classification objective. Experiments are performed on the DCASE2020 Task 1A challenge as well as the Urban Sound Classification (USC) tasks. In these experiments, the proposed approach yields relative improvements of 10% and 23% respectively for the DCASE2020 and USC datasets over the mel-spectrogram baseline. Also, the analysis of multi-head relevance weights provides insights on the learned representations.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.