Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Residual Tree Aggregation of Layers for Neural Machine Translation (2107.14590v1)

Published 19 Jul 2021 in cs.CL and cs.LG

Abstract: Although attention-based Neural Machine Translation has achieved remarkable progress in recent layers, it still suffers from issue of making insufficient use of the output of each layer. In transformer, it only uses the top layer of encoder and decoder in the subsequent process, which makes it impossible to take advantage of the useful information in other layers. To address this issue, we propose a residual tree aggregation of layers for Transformer(RTAL), which helps to fuse information across layers. Specifically, we try to fuse the information across layers by constructing a post-order binary tree. In additional to the last node, we add the residual connection to the process of generating child nodes. Our model is based on the Neural Machine Translation model Transformer and we conduct our experiments on WMT14 English-to-German and WMT17 English-to-France translation tasks. Experimental results across language pairs show that the proposed approach outperforms the strong baseline model significantly

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)