Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-Supervised Learning for Fine-Grained Image Classification (2107.13973v1)

Published 29 Jul 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Fine-grained image classification involves identifying different subcategories of a class which possess very subtle discriminatory features. Fine-grained datasets usually provide bounding box annotations along with class labels to aid the process of classification. However, building large scale datasets with such annotations is a mammoth task. Moreover, this extensive annotation is time-consuming and often requires expertise, which is a huge bottleneck in building large datasets. On the other hand, self-supervised learning (SSL) exploits the freely available data to generate supervisory signals which act as labels. The features learnt by performing some pretext tasks on huge unlabelled data proves to be very helpful for multiple downstream tasks. Our idea is to leverage self-supervision such that the model learns useful representations of fine-grained image classes. We experimented with 3 kinds of models: Jigsaw solving as pretext task, adversarial learning (SRGAN) and contrastive learning based (SimCLR) model. The learned features are used for downstream tasks such as fine-grained image classification. Our code is available at http://github.com/rush2406/Self-Supervised-Learning-for-Fine-grained-Image-Classification

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.