Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ExpertRank: A Multi-level Coarse-grained Expert-based Listwise Ranking Loss (2107.13752v1)

Published 29 Jul 2021 in cs.IR

Abstract: The goal of information retrieval is to recommend a list of document candidates that are most relevant to a given query. Listwise learning trains neural retrieval models by comparing various candidates simultaneously on a large scale, offering much more competitive performance than pairwise and pointwise schemes. Existing listwise ranking losses treat the candidate document list as a whole unit without further inspection. Some candidates with moderate semantic prominence may be ignored by the noisy similarity signals or overshadowed by a few especially pronounced candidates. As a result, existing ranking losses fail to exploit the full potential of neural retrieval models. To address these concerns, we apply the classic pooling technique to conduct multi-level coarse graining and propose ExpertRank, a novel expert-based listwise ranking loss. The proposed scheme has three major advantages: (1) ExpertRank introduces the profound physics concept of coarse graining to information retrieval by selecting prominent candidates at various local levels based on model prediction and inter-document comparison. (2) ExpertRank applies the mixture of experts (MoE) technique to combine different experts effectively by extending the traditional ListNet. (3) Compared to other existing listwise learning approaches, ExpertRank produces much more reliable and competitive performance for various neural retrieval models with different complexities, from traditional models, such as KNRM, ConvKNRM, MatchPyramid, to sophisticated BERT/ALBERT-based retrieval models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube