Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Using Perturbed Length-aware Positional Encoding for Non-autoregressive Neural Machine Translation (2107.13689v1)

Published 29 Jul 2021 in cs.CL

Abstract: Non-autoregressive neural machine translation (NAT) usually employs sequence-level knowledge distillation using autoregressive neural machine translation (AT) as its teacher model. However, a NAT model often outputs shorter sentences than an AT model. In this work, we propose sequence-level knowledge distillation (SKD) using perturbed length-aware positional encoding and apply it to a student model, the Levenshtein Transformer. Our method outperformed a standard Levenshtein Transformer by 2.5 points in bilingual evaluation understudy (BLEU) at maximum in a WMT14 German to English translation. The NAT model output longer sentences than the baseline NAT models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.