Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Investigating Text Simplification Evaluation (2107.13662v1)

Published 28 Jul 2021 in cs.CL

Abstract: Modern text simplification (TS) heavily relies on the availability of gold standard data to build machine learning models. However, existing studies show that parallel TS corpora contain inaccurate simplifications and incorrect alignments. Additionally, evaluation is usually performed by using metrics such as BLEU or SARI to compare system output to the gold standard. A major limitation is that these metrics do not match human judgements and the performance on different datasets and linguistic phenomena vary greatly. Furthermore, our research shows that the test and training subsets of parallel datasets differ significantly. In this work, we investigate existing TS corpora, providing new insights that will motivate the improvement of existing state-of-the-art TS evaluation methods. Our contributions include the analysis of TS corpora based on existing modifications used for simplification and an empirical study on TS models performance by using better-distributed datasets. We demonstrate that by improving the distribution of TS datasets, we can build more robust TS models.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.