Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Recurrent Semi-Supervised EEG Representation Learning for Emotion Recognition (2107.13505v1)

Published 28 Jul 2021 in cs.LG and eess.SP

Abstract: EEG-based emotion recognition often requires sufficient labeled training samples to build an effective computational model. Labeling EEG data, on the other hand, is often expensive and time-consuming. To tackle this problem and reduce the need for output labels in the context of EEG-based emotion recognition, we propose a semi-supervised pipeline to jointly exploit both unlabeled and labeled data for learning EEG representations. Our semi-supervised framework consists of both unsupervised and supervised components. The unsupervised part maximizes the consistency between original and reconstructed input data using an autoencoder, while simultaneously the supervised part minimizes the cross-entropy between the input and output labels. We evaluate our framework using both a stacked autoencoder and an attention-based recurrent autoencoder. We test our framework on the large-scale SEED EEG dataset and compare our results with several other popular semi-supervised methods. Our semi-supervised framework with a deep attention-based recurrent autoencoder consistently outperforms the benchmark methods, even when small sub-sets (3\%, 5\% and 10\%) of the output labels are available during training, achieving a new state-of-the-art semi-supervised performance.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.