Papers
Topics
Authors
Recent
2000 character limit reached

Task-Specific Normalization for Continual Learning of Blind Image Quality Models (2107.13429v3)

Published 28 Jul 2021 in cs.CV

Abstract: In this paper, we present a simple yet effective continual learning method for blind image quality assessment (BIQA) with improved quality prediction accuracy, plasticity-stability trade-off, and task-order/-length robustness. The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability, and learn task-specific normalization parameters for plasticity. We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score. The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism. Extensive experiments on six IQA datasets demonstrate the advantages of the proposed method in comparison to previous training techniques for BIQA.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.