Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching, Matroid, and Matchoid Constraints (2107.13071v3)

Published 27 Jul 2021 in cs.DS

Abstract: We consider the problem of maximizing a non-negative submodular function under the $b$-matching constraint, in the semi-streaming model. When the function is linear, monotone, and non-monotone, we obtain the approximation ratios of $2+\varepsilon$, $3 + 2 \sqrt{2} \approx 5.828$, and $4 + 2 \sqrt{3} \approx 7.464$, respectively. We also consider a generalized problem, where a $k$-uniform hypergraph is given, along with an extra matroid or a $k'$-matchoid constraint imposed on the edges, with the same goal of finding a $b$-matching that maximizes a submodular function. When the extra constraint is a matroid, we obtain the approximation ratios of $k + 1 + \varepsilon$, $k + 2\sqrt{k+1} + 2$, and $k + 2\sqrt{k + 2} + 3$ for linear, monotone and non-monotone submodular functions, respectively. When the extra constraint is a $k'$-matchoid, we attain the approximation ratio $\frac{8}{3}k+ \frac{64}{9}k' + O(1)$ for general submodular functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.