Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching, Matroid, and Matchoid Constraints (2107.13071v3)
Abstract: We consider the problem of maximizing a non-negative submodular function under the $b$-matching constraint, in the semi-streaming model. When the function is linear, monotone, and non-monotone, we obtain the approximation ratios of $2+\varepsilon$, $3 + 2 \sqrt{2} \approx 5.828$, and $4 + 2 \sqrt{3} \approx 7.464$, respectively. We also consider a generalized problem, where a $k$-uniform hypergraph is given, along with an extra matroid or a $k'$-matchoid constraint imposed on the edges, with the same goal of finding a $b$-matching that maximizes a submodular function. When the extra constraint is a matroid, we obtain the approximation ratios of $k + 1 + \varepsilon$, $k + 2\sqrt{k+1} + 2$, and $k + 2\sqrt{k + 2} + 3$ for linear, monotone and non-monotone submodular functions, respectively. When the extra constraint is a $k'$-matchoid, we attain the approximation ratio $\frac{8}{3}k+ \frac{64}{9}k' + O(1)$ for general submodular functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.