Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Griffin: Rethinking Sparse Optimization for Deep Learning Architectures (2107.12922v3)

Published 27 Jul 2021 in cs.AR

Abstract: This paper examines the design space trade-offs of DNNs accelerators aiming to achieve competitive performance and efficiency metrics for all four combinations of dense or sparse activation/weight tensors. To do so, we systematically examine the overheads of supporting sparsity on top of an optimized dense core. These overheads are modeled based on parameters that indicate how a multiplier can borrow a nonzero operation from the neighboring multipliers or future cycles. As a result of this exploration, we identify a few promising designs that perform better than prior work. Our findings suggest that even the best design targeting dual sparsity yields a 20%-30% drop in power efficiency when performing on single sparse models, i.e., those with only sparse weight or sparse activation tensors. We found that one can reuse resources of the same core to maintain high performance and efficiency when running single sparsity or dense models. We call this hybrid architecture Griffin. Griffin is 1.2, 3.0, 3.1, and 1.4X more power-efficient than state-of-the-art sparse architectures, for dense, weight-only sparse, activation-only sparse, and dual sparse models, respectively.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.